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ABSTRACT: Here, we report an orthogonal atom transfer radical polymer- 5 ATRE £
ization (ATRP) and reversible addition—fragmentation chain transfer (RAFT) ke . S v (‘Jﬁ
polymerization approach by selecting a suitable RAFT agent. Reverse ATRP of 7= > Metmacrytes > [0 T =50 QL AR 7]
poly(ethylene glycol) methyl ether methacrylate using ethyl 2-bromoisobu- — RAFT (suppressed)

tyrate was performed in the presence of 2-(n-butyltrithiocarbonate)propionic } . . \)"LO,R J K m
acid (BTPA). Size exclusion chromatography and UV—vis spectroscopy P+Hoocj\si;sp:\/\%moc*sis/\/\$=j:9 .
confirmed that BTPA remained inert under reverse ATRP conditions. The == Ik :

effect of the structure of the RAFT agent on the orthogonal ATRP—RAFT o S ®

polymerization was then investigated in detail, demonstrating the importance =™ 0J><Br Y Yﬁ°~ fL Acrylanide, N
of the leaving R-group of the RAFT agent. This approach was then used to ."‘ S NN caiprens o
copolymerize and homopolymerize a RAFT chain transfer monomer (CTM), ATRP  ~ } RAFT polymerization

2-(2-(n-butyltrithiocarbonate )propionate)ethyl methacrylate, under ATRP

conditions with the trithiocarbonate group on the CTM unit being unreacted.

RAFT solution polymerization and RAFT dispersion polymerization were then performed to synthesize graft and bottlebrush
copolymers. Upon RAFT dispersion polymerization, graft copolymer assemblies were also obtained, and the effect of the distribution
of solvophobic side chains on graft copolymer assemblies was investigated. This approach not only provides a facile route for the
rational synthesis of well-defined polymers with controlled architectures but also offers new mechanistic insights into ATRP and
RAFT polymerization.

B INTRODUCTION polymer chains with narrow molecular weight distributions is
facilitated by rapid and reversible exchange between dormant
and active chain ends. While ATRP reduces radical—radical
termination, RAFT outcompetes termination through a
reversible chain transfer process, ensuring controlled polymer
growth."* Upon the completion of polymerization, most
polymer chains retain their halide or thiocarbonyl end-groups
that can further chain extend to form block copolymers. "¢
One emerging direction of this research area is the
development of orthogonal RDRP methodologies that can
access unigue copolymer compositions such as bottlebrush
polymers.'” Recently, a variety of orthogonal RAFT polymer-
izations have been developed by several research groups.'®™**
For example, Xu, Boyer, and co-workers'’ explored a novel
wavelength selective photoinduced electron/energy transfer
RAFT (PET—RAFT) polymerization using two different RAFT
agents and two different photocatalysts, allowing selective

Over the past 20 years or so, reversible deactivation radical
polymerization (RDRP) has become one of the most versatile
polymerization techniques that enables the rational synthesis of
well-defined polymers with precise molecular weight, low
dispersity, diverse chemical functionality, and controlled
polymer architecture.' ™ Among various RDRP techniques,
atom transfer radical polymerization (ATRP)'® and reversible
addition—fragmentation chain transfer (RAFT) polymeriza-
tion'" have attracted increasing attention due to their distinct
advantages such as excellent controllability, tolerance to various
functional groups and solvents, and mild reaction conditions.
For a copper (Cu)-catalyzed ATRP, the Cu complex in its lower
oxidation state reacts with an alkyl halide initiator to generate
propagating radicals and an oxidized Cu complex coordinated to
a halide. The deactivating Cu—halide complex can further react
with propagating radicals to regenerate the dormant polymer
chains and the original Cu complex.'” For a typical RAFT
polymerization, a thiocarbonylthio compound is usually used
and can react with propagating radicals to generate an
intermediate radical, which can further form a new propagating
radical and a dormant thiocarbonythio-capped polymer chain
through the fragmentation of the weak carbon—sulfide bond."?
In both ATRP and RAFT polymerization, the formation of
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Scheme 1. (a) Proposed Mechanism for the Combined ATRP—RAFT Polymerization of Methacrylic Monomers; (b) Chemical
Structures of ATRP Initiator, Ligand, and RAFT Agents Used in the Present Study
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control for orthogonal RAFT polymerizations. In their study,
they demonstrated that the dithiobenzoate RAFT agent was
activated and the trithiocarbonate RAFT agent was inactivated
under red light irradiation, while the trithiocarbonate RAFT
agent could be reactivated under green light irradiation. You and
co-workers”’ reported an orthogonal radical and cationic RAFT
polymerization using two distinct RAFT agents. Selective
cationic RAFT polymerization of a RAFT inimer bearing
trithiocarbonate remains inactivated during the cationic RAFT
polymerization. A second monomer can be grafted from the
pendant trithiocarbonate groups via radical RAFT polymer-
ization to form well-defined bottlebrush polymers. Matyjaszew-
ski and co-workers”' developed a wavelength selective photo-
iniferter RAFT polymerization of methacrylic monomers using
two RAFT agents with different leaving R-groups. Under
photoiniferter conditions (green light irradiation), only one
RAFT agent was activated, while the other RAFT agent was
inactivated. Through green light-activated photoiniferter RAFT
(co)polymerization of a methacrylic RAFT inimer and the
subsequently blue-light-activated photoiniferter RAFT polymer-
ization of an acrylamide monomer, well-defined comblike and
bottlebrush polymer were successfully obtained.

Despite some significant achievements having been made in
orthogonal RAFT polymerizations, these methodologies would
lead to the formation of polymers with a RAFT end-group. This
defect in the polymer structure would lead to the growth of a side
chain at the chain end and therefore poor performance for some
specific applications. As an alternative, orthogonal ATRP—
RAFT polymerization is an attractive strategy to overcome this
issue since the polymer backbone can be synthesized based on
ATRP and the halide end-group is inactivated under RAFT
polymerization conditions. However, radicals generated during
ATRP may also react with the RAFT agent that would lead to
the undesired crossover.”” As a result, the orthogonal ATRP—
RAFT polymerization always requires the implementation of
RAFT polymerization first and then ATRP.**™*° This strategy
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limits the synthesis of RAFT polymers with various structures
that can be used for the preparation of polymer assemblies by
RAFT-mediated polymerization-induced self-assembly (RAFT-
PISA).>'™** Therefore, it is highly desirable to develop
orthogonal ATRP—RAFT polymerization that can perform
ATRP first and then RAFT polymerization.

In this study, we develop an orthogonal ATRP—RAFT
polymerization for the facile synthesis of graft and bottlebrush
copolymers. In contrast to previous work that requires the
implementation of RAFT polymerization first, our study focuses
on a reverse sequence that can perform ATRP first and then
RAFT polymerization by selecting a suitable RAFT agent. The
RAFT agent is inactivated during ATRP of methacrylic
monomers that can be further activated via conventional
RAFT polymerization of acrylamide, acrylate, or styrene (St).
We also performed ATRP of a methacrylic RAFT chain transfer
monomer (CTM) in the first step before switching to the second
step to enable the RAFT polymerization of acrylamide and St,
allowing the preparation of graft and bottlebrush copolymers.
Multifunctional macro-RAFT agents with different structures
synthesized by orthogonal ATRP—RAFT polymerization were
also used to mediate RAFT dispersion polymerization,
demonstrating the advantages of orthogonal ATRP—RAFT
polymerization.

B RESULTS AND DISCUSSION

Investigation of the Reactivity of RAFT Agents during
Reverse ATRP of the Methacrylic Monomer. The over-
arching goal of the present study is to explore a RAFT
polymerization that can remain dormant during ATRP and can
reactivate via the subsequent polymerization. In our previous
work,””*" taking advantage of different RAFT controllability of
two RAFT agents toward methacrylic monomers, we demon-
strated that 2-(n-butyltrithiocarbonate)propionic acid (BTPA)
was inactivated during photoinitiated RAFT polymerization of
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Table 1. Summary of Polymers Synthesized by Reverse ATRP of PEGMA in the Presence of Different Types and Amounts of the

RAFT Agent
entry [PEGMA]/[EBiB]/[RAFT agent] RAFT agent

1 15/1/0 none

2 15/1/2 ETPA

3 15/1/2 BTPA

4 15/1/2 DTPA

S 15/1/1 BDTC

6 15/1/2 BDTC

7 15/1/1 DDMAT
8 15/1/2 DDMAT
9 15/1/1 CDPA
10 15/1/2 CDPA

“The monomer conversion was determined by 'H
methacrylate) standards.

monover conversion (%)% DP M, (kg/ mol)? M,/M,°
93.2 14.1 8.70 1.11
91.7 13.8 8.85 1.11
93.5 14.0 9.03 1.08
91.7 13.7 8.91 1.10
94.4 14.3 7.84 1.13
94.5 14.3 7.73 1.13
95.9 14.4 7.20 1.17
95.0 14.2 7.39 1.15
93.9 14.1 4.90 1.15
90.4 13.6 3.62 1.13

NMR spectroscopy. °M, and M, /M, were checked by SEC against linear poly(methyl
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Figure 1. (a) SEC traces of polymers synthesized by reverse ATRP of PEGMA ([PEGMA]/[EBiB] = 15/1) in the absence or presence of BTPA
([PEGMA]/[EBiB]/[BTPA] = 15/1/2). (b) UV—vis spectra of BTPA and purified polymers synthesized by reverse ATRP of PEGMA ([PEGMA]/
[EBiB] = 15/1) in the absence or presence of BTPA ([PEGMA]/[EBiB]/[BTPA] = 15/1/2). (c) SEC traces of polymers synthesized by reverse
ATRP of PEGMA in the presence of ETPA, BTPA, or DPTA ([PEGMA]/[EBiB]/[RAFT agent] = 15/1/2). (d) UV—vis spectra of purified polymers
synthesized by reverse ATRP of PEGMA in the presence of ETPA, BTPA, or DPTA ([PEGMA]/[EBiB]/[RAFT agent] = 15/1/2).

methacrylic monomers using 4-cyano-4-
(ethylthiocarbonothioylthio)pentanoic acid (CEPA) as the
RAFT agent and sodium phenyl 2,4,6-trimethylbenzoylphos-
phinate (SPTP) as the photoinitiator. This phenomenon can be
explained by the fact that methacrylyl propagating radicals are
prone to react with CEPA to generate new radicals, while the
reaction pathway of methacrylyl propagating radicals with BTPA
is greatly suppressed. Inspired by these results, we assumed that
RAFT agents with poor RAFT controllability toward meth-
acrylic monomers could also remain dormant during a reverse
ATRP of methacrylic monomers using a traditional initiator. As
shown in Scheme 1la, the reaction pathway of methacrylyl
propagating radicals should be dominated by the ATRP process.
In the meantime, the possible formation of intermediate adduct
radicals between methacrylyl-propagating radicals and the
RAFT agent eventually fragments back to the original species.
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An initial Cu-catalyzed reverse ATRP of poly(ethylene glycol)
methyl ether methacrylate (PEGMA, M, = 475 g/mol) was
performed at 70 °C for 12 h using 2,2-azobissobutyronitri
(AIBN) as the initiator in the presence of ethyl 2-
bromoisobutyrate (EBiB), CuCl,, and tris(2-pyridylmethyl)-
amine (TPMA) ([PEGMA]/[EBiB] = 15/1). The polymer-
ization resulted in 93.2% monomer conversion (Table 1, entry
1). Symmetrical size exclusion chromatography (SEC) trace
with a narrow molecular weight distribution (M,,/M, = 1.11)
was observed for this polymer (black line in Figure 1a). The
reverse Cu-catalyzed ATRP of PEGMA was then performed
under the same conditions in the presence of BTPA ([EBiB]/
[BTPA] = 1/2). After 12 h of polymerization, a high monomer
conversion (93.5%) was still achieved (Table 1, entry 3). More
importantly, it was found that the SEC trace of the polymer
synthesized in the presence of BTPA was almost identical with
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Figure 2. (a) Polymerization kinetics of reverse ATRP of PEGMA in the absence or presence of BTPA with different [PEGMA]/[EBiB]/[BTPA]
ratios. (b) Plots of In([M],/[M]) vs reaction time for reverse ATRP of PEGMA in the absence or presence of BTPA with different [PEGMA]/[EBiB]/
[BTPA] ratios. (c) Evolution of number-average molecular weight (M,) and molecular weight distribution (M,,/M,,) with monomer conversion for
reverse ATRP of PEGMA in the absence or presence of BTPA with different [PEGMA]/[EBiB]/[BTPA] ratios.

the polymer synthesized in the absence of BTPA (Figure la).
These polymers were purified by several precipitations in
petroleum ether/ethyl ether (5/5, v/v) and further analyzed by
UV—vis spectroscopy. As shown in Figure 1b, no absorption was
observed at 310 nm (characteristic absorption of trithiocar-
bonate) for these polymers, suggesting that no trithiocarbonate
group was incorporated into the polymer structure. The
supernatant of the polymerization was also concentrated and
characterized by '"H NMR spectroscopy (Figure S1), which
clearly displayed the characteristic signal of unreacted BTPA at &
= 4.80 ppm (—CH in the adjacent trithiocarbonate group).
These results suggest that BTPA did not participate in the Cu-
catalyzed reverse ATRP of PEGMA when using EBiB as the
ATRP initiator and TPMA as the ligand.

Inspired by these initial findings, we assumed that the
reactivity of RAFT agents during reverse ATRP of PEGMA
should mainly rely on the structure of the RAFT agent and, more
precisely, on the structure of the Z-group and leaving R-group.
Control experiments were then performed to understand the
structure—property relationship of the reactivity of RAFT agents
in the reverse ATRP of PEGMA. Conventional RAFT
polymerization of PEGMA was first performed using BTPA
without the addition of EBiB, CuCl,, and TPMA. In these cases,
high monomer conversions and broad molecular weight
distributions were observed (Figure S2). This can be attributed
to the mismatch of the propagating methacrylyl radical (tertiary
carbon) and the reinitiating radical from BTPA (secondary
carbon) as well as the poor f-scission of the carbon—sulfide
bond (Scheme 1la). Reverse ATRP of PEGMA was also
performed in the presence of 2-(n-ethyltrithiocarbonate)-
propionic acid (ETPA), BTPA (the same as Figure 1a) or 2-
(n-dodecyltrithiocarbonate )propionic acid (DTPA) with the
[PEGMA]/[EBiB]/[RAFT agent] ratio of 15/1/2. These
RAFT agents share the same leaving R-group but with different
alkyl Z-groups. High PEGMA conversions (>91.7%) were
observed in all cases as confirmed by "H NMR spectroscopy
(Table 1, entry 2—4). Figure lc shows that these SEC traces
almost overlap, suggesting that these RAFT agents also did not
participate in the ATRP process. Moreover, it was demonstrated
that the Z-groups of these RAFT agents had no influence on the
reactivity of the RAFT agent during reverse ATRP of PEGMA.
UV—vis spectra of the purified polymers indicated the absence
of signal at 310 nm characteristic of the trithiocarbonate group
(Figure 1d). Furthermore, '"H NMR analysis confirmed the
absence of the trithiocarbonate group in the polymer structure
(Figure S3).
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Polymerization kinetics of reverse ATRP of PEGMA in the
absence ([PEGMA]/[EBiB] = 30/1) or in the presence of
BTPA ([PEGMA]/[EBiB]/[BTPA] = 30/1/3 or 30/1/10) was
then investigated. As shown in Figure 2a,b, similar polymer-
ization behaviors were observed in all cases, and over 90%
monomer conversions were achieved within 7 h of polymer-
ization. The presence of BTPA in the reaction mixture gave a
comparable propagation rate constant to a reaction mixture
without BTPA. Increasing the amount of BTPA led to a slightly
lower polymerization rate for PEGMA, which should be
attributed to the presence of an additional reaction pathway
for PPEGMA radicals. This pathway would lead to the possible
generation of intermediate adduct radicals between PPEGMA
propagating radicals and BTPA which will fragment back to their
original species (Scheme 1a), but this will reduce the overall
radical concentration in the polymerization system and
therefore slower polymerization. Purified polymers obtained
during the kinetic studies were also analyzed by SEC (Figure
2¢). Comparable molecular weights with narrow molecular
weight distributions were observed, which further confirms that
BTPA did not participate in the ATRP process with propagating
PPEGMA radicals. In each case, a linear evolution of M, with
monomer conversion was also observed, which is one of the
typical characteristics of controlled/“living” polymerization.*" It
should be noted that polymers synthesized in the presence of
BTPA exhibit narrower molecular weight distributions than the
polymers synthesized in the absence of BTPA. This may be
attributed to the relatively low radical concentration in the
polymerization system with BTPA that can reduce the
possibility of radical—radical termination.

We then further investigated the effect of leaving the R-group
structure on the reactivity of the RAFT agent during reverse
ATRP of PEGMA. Reverse ATRP of PEGMA was then
performed in the presence of benzyl dodecyl trithiocarbonate
(BDTC), S-1-dodecyl-S'-(a,a’-dimethyl-a”-acetic acid) trithio-
carbonate (DDMAT), or 4-cyano-4%-
[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid
(CDPA) with the [PEGMA]/[EBiB]/[RAFT] ratio of 15/1/1
or 15/1/2 (Table 1, entry 5S—10). These RAFT agents share the
same Z-group (C;,) but with different leaving R-groups.
Compared with DTPA that has a carboxyl-stabilized secondary
carbon R-group, DDMAT has a carboxyl-stabilized tertiary
carbon R-group that should have a higher transfer coefficient.
Due to the similar structure of the leaving R-group of DDMAT
with the methacrylyl propagating radical, DDMAT can partially
control the RAFT polymerization of methacrylic mono-
mers."”** The leaving R-group of BDTC (benzyl group) has a
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Figure 3. (a) SEC traces and (b) UV—vis spectra of polymers synthesized by reverse ATRP of PEGMA in the absence of presence of BDTC with
different [PEGMA]/[EBiB]/[BDTC] ratios. (c) SEC traces and (d) UV—vis spectra of polymers synthesized by reverse ATRP of PEGMA in the
absence or presence of DDMAT with different [PEGMA]/[EBiB]/[DDMAT] ratios. (e) SEC traces and (f) UV—vis spectra of polymers synthesized
by reverse ATRP of PEGMA in the absence or presence of CDPA with different [PEGMA]/[EBiB]/[CDPA] ratios. Note: In each case, a polymer
concentration of 1.0 mg/mL was employed for the UV—vis spectroscopy characterization.

lower transfer coefficient than the leaving R-group of DDMAT,”
and it is expected that BDTC should exhibit poorer RAFT
controllability toward methacrylic monomers. Figure 3 shows
SEC traces of the polymers obtained in the presence of different
RAFT agents. In the presence of BDTC, the SEC trace shifted
slightly to lower molecular weight (Figure 3a), and the M, value
was decreased slightly from 8.70 kg/mol ([EBiB]/[BDTC] = 1/
0) to 7.84 kg/mol ([EBiB]/[BDTC] = 1/1) and 7.73 kg/mol
([EBiB]/[BDTC] =1/2). This is due to the partial participation
of BDTC during reverse ATRP of PEGMA. This can be further
confirmed by the UV—vis spectra of the purified polymers. As
shown in Figure 3b, a weak absorption signal at 310 nm was
observed for each polymer, which is the characteristic
absorption of trithiocarbonate group. A large amount of
unreacted BDTC was separated during the purification of the
obtained polymers (Figure S4). Similar observations were also
observed in reverse ATRP of PEGMA in the presence of
DDMAT. Compared with the case of BDTC, it was found that
more DDMAT participated during reverse ATRP of PEGMA
(Figure 3c). For example, the decrease of M, value was more
obvious in the presence of DDMAT (e.g., 8.70 kg/mol for
[EBiB]/[DDMAT] = 1/0 to 7.39 kg/mol [EBiB]/[DDMAT] =
1/1). A noticeable amount of unreacted DDMAT was also

9770

found in the solution (Figure SS). Compared with the polymers
synthesized in the presence of BDTC (Figure 3b), a stronger
UV—vis absorption at 310 nm was observed for the polymers
synthesized in the presence of DDMAT (Figure 3d). In contrast,
CDPA is a well-known RAFT agent that exhibits excellent RAFT
controllability toward methacrylic monomers due to the high
transfer efficient of the (4-cyanopentanoicacid) radical R-
group.™ Figure 3e shows SEC traces of polymers obtained by
the reverse ATRP of PEGMA in the presence of CDPA with the
[PEGMA]/[EBiB]/[CDPA] ratio of 15/1/1 or 15/1/2. It was
found that the SEC trace shifted significantly to lower molecular
weight with decreasing [EBiB]/[CDPA] ratio. Moreover, the
obtained polymers exhibited strong absorption at the wave-
length of 310 nm (Figure 3f). These results suggest that CDPA
can efficiently participate in the reverse ATRP of PEGMA and
that the polymerization of PEGMA should undergo a mixed
mechanism of ATRP and RAFT polymerization. 'H NMR
analysis also verified the presence of a CDPA end group in the
formed polymer (Figure S6).

Synthesis of Graft and Bottlebrush Copolymers by
Orthogonal ATRP—RAFT Polymerization. With the estab-
lished orthogonal ATRP—RAFT polymerization, we then intend
to expand this method for the synthesis of complex
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Figure 4. (a) Schematic illustration for the synthesis of P(PEGMA,;-co-BTPEMA, ;) by reverse ATRP of PEGMA and BTPEMA using EBiB and the
subsequent grafting of PDMA chains through conventional RAFT polymerization of DMA at 70 °C. (b) '"H NMR spectrum of P(PEGMA, 4-co-
BTPEMA, ). (c) SEC traces of P(PEGMA,,-co-BTPEMA, ;) (black line) and P(PEGMA ;-co-BTPEMA, ;)-graft- PDMA,, (red line). (d) "H NMR

spectrum of P(PEGMA, ,-co-BTPEMA, ;)-graft- PDMA,,.

architectures, including graft and bottlebrush copolymers. A
RAFT-based CTM was first synthesized by linking BTPA and
hydroxyethyl methacrylate via esterification, denoted as 2-(2-(n-
butyltrithiocarbonate)propionate)ethyl methacrylate (BTPE-
MA, Figure S9). Reverse ATRP of PEGMA and BTPEMA
was then performed with a [PEGMA]/[EBiB]/[BTPEMA]
ratio of 15/1/S (Figure 4a). The obtained polymer (P-
(PEGMA,;-co-BTPEMA,,;), as determined by 'H NMR
analysis), exhibited a narrow molecular weight distribution
(M,,/M, = 1.18) with a M, value of 8.56 kg/mol (black line in
Figure 4c). Further analysis of the purified polymer with 'H
NMR spectroscopy indicated the successful incorporation of
BTPEMA into the polymer structure (Figure 4b). Moreover, the
presence of a proton signal at 4.80 ppm confirmed that the
pendant trithiocarbonate group was inactivated during reverse
ATRP. The purified P(PEGMA,,-co-BTPEMA, ;) was then
grafted with N,N-dimethylacrylamide (DMA) through a
conventional thermally RAFT polymerization (Figure 4a). A
graft copolymer (P(PEGMA, ,-co-BTPEMA, ;)-graft-PDMA,,)
was synthesized with a relatively narrow molecular weight
distribution (M,,/M, = 1.23) (red line in Figure 4c). It should be
noted that copolymerization with fewer than 6 units of BPTMA
would result in more than 5% of the polymers without the
incorporation of BPTMA by random distribution.*> Therefore,
a small low-molecular-weight peak was also observed in the SEC
trace after the polymerization of DMA. '"H NMR spectrum of
the purified polymer revealed grafting of PDMA from
P(PEGMA, ;-co-BTPEMA, ;) with the appearance of a —CHj,
peak at 2.80—3.00 ppm (peak d in Figure 4d).

To further demonstrate the versatility of this approach, we
then attempted to synthesize bottlebrush copolymers through a
grafting-from approach (Figure Sa). Backbones of bottlebrush
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polymers were synthesized by reverse ATRP of BTPEMA at 70
°C for 12 h at different [BTPEMA]/[EBiB] ratios. The average
degree of polymerization (DP) of each polymer chain was
determined by "H NMR spectroscopy. Figure Sb shows SEC
traces of PBTPEMA with different DPs. Relatively narrow
molecular weight distribution (M,,/M, < 1.28) was observed in
each case and the number-average molecular weight increased
linearly with the average DP of PBTPEMA (Figure 5c). 'H
NMR spectrum of PBTPEMA,;, revealed that the integra of
signal at 3.30 ppm (peak c in Figure Sd) is twice that of signal at
4.80 ppm (peak a in Figure 5d), confirming the trithiocarbonate
group remained intact during reverse ATRP of BTPEMA. It
should be noted that this approach is also versatile to traditional
ATRP (Figure S10). As a proof-of-concept experiment,
PBTPEMA,, was then grafted with polystyrene (PSt) through
a thermally initiated RAFT polymerization of St at 70 °C. The
DP of PSt side chain was also determined by the St conversion
and the resulting bottlebrush polymer (PBTPEMA,,-graft-
PSt,) exhibited a relatively narrow molecular weight distribution
(M,,/M, = 1.33) (Figure Se). Figure S11 shows the "H NMR
spectrum of PBTPEMA,,-graft-PSt; and the complete dis-
appearance of the signal at 4.80 ppm after RAFT polymerization
of St, suggesting that all pendant trithiocarbonate groups
involved the grafting reaction. The architecture of bottlebrush
polymers can be further controlled by using a trifunctional
ATRP initiator. Using the similar approach, a three-arm star-like
bottlebrush polymer was also successfully synthesized (Figures
S12 and 13).

Graft Copolymer Assemblies Prepared via RAFT
Dispersion Polymerization Using Multifunctional
Macro-RAFT Agents. Over the past ten years or so,
polymerization-induced self-assembly via RAFT dispersion
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PSt.

polymerization has become a powerful technique for the rational
synthesis of polymer assemblies with various morpholo-
gies.46_60 Recently, we and others have demonstrated that the
architecture of macromolecular RAFT (macro-RAFT) agents
played an important role in the PISA process and the
morphology of polymer assemblies.”’ ®° The established
orthogonal ATRP—RAFT polymerization enables the synthesis
of multifunctional macro-RAFT agents with diverse architec-
tures. In this section, we also explored the potential of
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orthogonal ATRP—RAFT polymerization in PISA for the
preparation of graft copolymer assemblies.

First, a series of multifunctional macro-RAFT agents were
synthesized by a two-step reverse ATRP of PEGMA and
BTPEMA ([PEGMA]/[BTPEMA]/[EBiB] = 20/4/1). BTPE-
MA was added into the polymerization at intermediate PEGMA
conversion that can control the distribution of RAFT groups in
the polymer structure (Scheme 2). Table 2 shows recipes for the
macro-RAFT agents synthesized by the two-step reverse ATRP
of PEGMA and BTPEMA. 'H NMR analysis confirmed that
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Scheme 2. Schematic Illustration for the Synthesis of Multifunctional Macro-RAFT Agents with Different RAFT Group
Distributions by a Two-Step Reverse ATRP of PEGMA and BTPEMA

Intermediate PEGMA conversion

+\\t
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AIBN, 70 °C
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PEGMA
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The addition of

11

Intermedlate PEGMA conv ersmn

Table 2. Summary for the Synthesis of Multifunctional Macro-RAFT Agents by a Two-Step Reverse ATRP of PEGMA and

BTPEMA
intermediate PEGMA conversion
polymer [PEGMA]/[BTPEMA]/[EBiB] (%)“
1 20/4/1 0
2 20/4/1 62.2
3 20/4/1 82.6
4 20/4/1 94.1

overall PEGMA overall BTPEMA M,

conversion (%)“ conversion (%)“ (kg/mol)”  M,/M,”
97.8 98.5 12.89 1.17
99.3 95.0 12.93 1.16
98.9 98.5 13.03 1.18
99.2 95.0 13.03 1.14

“Monomer conversions were determined by 'H NMR spectroscopy. M, and M, /M, were determined by SEC against poly(methyl methacrylate)

standards.

high overall PEGMA and BTPEMA conversions were achieved
in all cases. These macro-RAFT agents share similar molecular
weights and chemical compositions, as evidenced by the
overlapped SEC traces (Figure 6). When the intermediate

Polymer 3

Polymer 2 M, = 13.03 kg/mol
=12.93 kg/mol MM, =1.18
M/M,=1.16
Polymer 1 Polymer 4
M, = 12.89 kg/mol =13.03 kg/mol
MM, =1.14

MM, =1.17

10000 100000

Molecular weight (g/mol)

1000

Figure 6. SEC traces of multifunctional macro-RAFT agents
synthesized by a two-step reverse ATRP of PEGMA and BTPEMA.

PEGMA conversion is 0%, the RAFT groups should distribute
randomly along the polymer backbone. On increasing the
intermediate PEGMA conversion, the RAFT groups should
taper from the bromide end-group (Scheme 2). With these
macro-RAFT agents in hand, one could investigate the effect of
the solvophobic side chain distribution on the morphology of
graft copolymer assemblies under PISA conditions.

RAFT dispersion polymerizations of St (20% w/w) were then
performed in methanol/water (8/2, w/w) by using these
multifunctional macro-RAFT agents with different [St]/
[macro-RAFT] ratios. High monomer conversions were
achieved in all cases, as confirmed by '"H NMR analysis.
Moreover, a coagulum-free dispersion was obtained in each case.
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Upon RAFT dispersion polymerization, graft copolymers with
PSt side chains were obtained. The structure of graft copolymers
is determined by the structure of macro-RAFT agents (Figure
7a). For example, the PSt side chains would distribute randomly
within the graft copolymer when using polymer 1 as the macro-
RAFT agent; while the PSt side chain would mainly distribute at
the bromide end-group when using polymer 4 as the macro-
RAFT agent. Figure S14 shows SEC traces of graft copolymers
obtained by RAFT dispersion polymerization of St using these
multifunctional macro-RAFT agents with a [St]/[macro-
RAFT] ratio of 100. Multimodal SEC traces were observed in
all cases. This is because the formed polymers should be a
mixture of graft copolymers with different number of side chains.
Figure 7b—q shows transmission electron microscopy (TEM)
images of the formed graft copolymer assemblies prepared by
the RAFT dispersion polymerization of St using these macro-
RAFT agents. When polymer 1 was used as the macro-RAFT
agent, spheres mixed with vesicles were observed at the [St]/
[macro-RAFT] ratio of 100 (Figure 7b). A pure vesicular
morphology was observed at the [St]/[macro-RAFT] ratio of
150 or 200 (Figure 7c,d). Further increasing the [St]/[macro-
RAFT] ratio to 250 led to the formation of large compound
vesicles (Figure 7e). In contrast, mixed morphologies of vesicles
and spheres were observed at all investigated [St]/[macro-
RAFT] ratios when polymer 2 was used as the macro-RAFT
agent (Figure 7f—i). When polymer 3 or polymer 4 was used as
the macro-RAFT agent, pure spheres were obtained at the [St]/
[macro-RAFT] ratio of 100 (Figure 7jn), and mixed
morphologies were observed when the [St]/[macro-RAFT]
ratio was 150 or higher (Figure 7k—m,0—q). These results
suggest that higher-order morphologies are favor when the PSt
side chains distributed along the polymer backbone, which can
be attributed to the enhanced fusion between micelles (a key
step for the morphological evolution). In contrast, the possibility
of fusion between micelles is reduced when the PSt side chains
grow mainly at one chain end of the graft copolymers and
therefore lower-order morphologies are favor.

We then further explored this method to synthesize star-like
graft copolymer assemblies by replacing EBiB with a trifunc-
tional ATRP initiator (TMP-Br;). As shown in Scheme 3a, a
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Figure 7. (a) Schematic illustration for the synthesis of graft copolymers by RAFT dispersion polymerization of St in methanol/water using the
multifunctional macro-RAFT agents. (b—e) TEM images of graft copolymer assemblies prepared by RAFT dispersion polymerization of St using
polymer 1 as the macro-RAFT agent with different [St]/[macro-RAFT] ratios. (f—i) TEM images of graft copolymer assemblies prepared by RAFT
dispersion polymerization of St using polymer 2 as the macro-RAFT agent with different [St]/[macro-RAFT] ratios. (j—m) TEM images of graft
copolymer assemblies prepared by RAFT dispersion polymerization of St using polymer 3 as the macro-RAFT agent with different [St]/[macro-
RAFT] ratios. (n—q) TEM images of graft copolymer assemblies prepared by RAFT dispersion polymerization of St using polymer 4 as the macro-

RAFT agent with different [St]/[macro-RAFT] ratios.

Scheme 3. (a) Schematic Illustration for the Synthesis of 3-Arm Star-like Multifunctional Macro-RAFT Agent by a Two-Step

Reverse ATRP of PEGMA and BTPEMA Using TMP-Br; as the ATRP Initiator; (b) Schematic Illustration for the Synthesis of 3-
Arm Star-like Multifunctional Macro-RAFT Agent by a Two-Step Green Light-Activated Photoiniferter RAFT Polymerization of
PEGMA and BTPEMA Using TMP-CEPA; as the RAFT Agent
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star-like macro-RAFT agent was synthesized by the two-step
reverse ATRP of PEGMA and BTPEMA, denoted as
(P(BTPEMA, 4-co-PEGMA, ,)-b-PPEGMA,-Br);. As a control

experiment, a two-step green light-activated photoiniferter
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RAFT polymerization was also employed to synthesize a star-
like multifunctional macro-RAFT agent with a similar structure
(Scheme 3b), denoted as (P(BTPEMA;-co-PEGMA,)-b-
PPEGMA,,-CEPA);. These two macro-RAFT agents were
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Figure 9. (a) Schematic illustration for the synthesis of star-like graft copolymers by RAFT dispersion polymerization of St using (P(BTPEMA;-co-
PEGMA;)-b-PPEGMA,,-CEPA); as the macro-RAFT agent. (b—e) TEM images of graft copolymer assemblies prepared by RAFT dispersion
polymerization of St using (P(BTPEMA;-co-PEGMA;)-b-PPEGMA -CEPA); as the macro-RAFT agent with different [St]/[macro-RAFT] ratios.
() Schematic illustration for the synthesis of star-like graft copolymers by RAFT dispersion polymerization of St using (P(BTPEMA, 4-co-PEGMA, ,)-
b-PPEGMA,-Br); as the macro-RAFT agent. (g—j) TEM images of graft copolymer assemblies prepared by RAFT dispersion polymerization of St
using (P(BTPEMA, y-co-PEGMA, ,)-b-PPEGMA,-Br), as the macro-RAFT agent with different [St]/[macro-RAFT] ratios.

analyzed by SEC (Figure 8), and comparable molecular weights
and narrow molecular weight distributions were observed.
These two macro-RAFT agents were then used to mediate
RAFT dispersion polymerization of St (20% w/w) with different
[St]/[macro-RAFT] ratios. It was found that the formed
polymers cannot dissolve in THF for SEC analysis, which can be
attributed to the occurrence of radical—radical termination in
the core-forming block. When (P(BTPEMA;-co-PEGMA;)-b-
PPEGMA,,-CEPA), was used as the macro-RAFT agent, large
aggregates of polymer particles were observed at the [St]/
[macro-RAFT] ratio of 200 or lower (Figure 9b—d). When the
[St]/[macro-RAFT] ratio reached 250, precipitation occurred
during the polymerization (inset image in Figure 9¢) and large
spheres were observed for the dispersed part (Figure 9e). This
should be attributed to the occurrence of bridging events
between polymer particles because some PSt side chains always
grow at the periphery of star graft copolymers (Figure 9a). This
hypothesis can be supported by using (P(BTPEMA, 4-co-
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PEGMA, ,)-b-PPEGMA,-Br); as the macro-RAFT agent since
the bromide end groups cannot be activated under RAFT
dispersion polymerization conditions (Figure 9f). Colloidally
stable dispersions were obtained in all cases, even the [St]/
[macro-RAFT] ratio reached 250 (Figure 9g—j). Moreover, no
aggregation was observed for the resulting polymer particles.
Dynamic light scattering (DLS) data of these samples also
verified the morphological difference (Figure S16). These
results demonstrate that the orthogonal ATRP—RAFT polymer-
ization offers new opportunities for the synthesis of well-defined
polymers for some specific applications.

B CONCLUSIONS

In summary, we have successfully developed an orthogonal
ATRP—RAFT polymerization via careful selection of the leaving
R-group of the RAFT agent. Unlike previous orthogonal
ATRP—RAFT polymerization that RAFT polymerization has
to be performed first to avoid undesired crossover, this work
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provides a new orthogonal ATRP—RAFT polymerization that
can perform ATRP first and then RAFT polymerization. The
effect of the structure of the RAFT agent on the orthogonal
ATRP—RAFT polymerization was investigated in detail
Copolymerization and homopolymerization of BTPEMA were
performed via reverse ATRP with the trithiocarbonate group on
the BTPEMA unit being unreacted. RAFT solution polymer-
ization of DMA or St was then performed to generate well-
defined graft and bottlebrush copolymers. Finally, RAFT
dispersion polymerization of St was also employed to synthesize
graft copolymers with different distributions of side chains and
the assemblies. It was found that the distribution of solvophobic
side chains of graft copolymers had a significant influence on the
morphology of graft copolymer assemblies. This approach offers
new opportunities for the synthesis of complex macromolecular
architectures for some specific applications.
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